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One reason why Brownian motion and Johnson noise are difficult subjects to teach is that their
mathematical requirements transcend the capabilities of ordinary differential calculus. Presented
here is an exposition of the needed generalization of calculus, namely continuous Markov process
theory, in a form that should be accessible to advanced physics undergraduates. It is shown how this
mathematical framework enables one to give clear, concise derivations of all the principal results of
Brownian motion and Johnson noise, including fluctuation—dissipation formulas, auto-covariance
transport formulas, spectral density formulas, Nyquist’s formula, the notions of white and 1/f2
noise, and an accurate numerical simulation algorithm. An added benefit of this exposition is a
clearer view of the mathematical connection between the two very different approaches to Brownian
motion taken by Einstein and Langevin in their pioneering papers of 1905 and 1908. © 1996

American Association of Physics Teachers.

L. INTRODUCTION

Two significant accomplishments of physics in the first
half of this century were the theoretical elucidations of
Brownian motion' > and Johnson noise.*> Despite the exten-
sive theoretical advancements in our understanding made
since those classic works,®~!! the presentation of these topics
to students has always posed a challenge. Typical expositions
invoke some combination of a nonintuitive and complicated
partial differential equation named ‘‘Fokker—Planck,” and a
more plausible but disquietingly not-so-ordinary differential
equation named “Langevin.” In the case of the latter, for
example, students are usually presented with a benign look-
ing equation of the form

dXx(t)
dt

=—aX()+f(1),

then told to assume, for no compelling reason, that the driv-
ing function f(¢) on the right is “delta-correlated and Gauss-
ian,” and finally informed much later (if the teacher can mus-
ter the courage) that the derivative on the left side does not,
after all, really exist.

The purpose of this paper is to suggest a more palatable
and convincing way of presenting Brownian motion and
Johnson noise to students of physics. This approach avoids
the Fokker—Planck equation entirely and relies solely on the
Langevin equation, but not quite in the way just described.
The key is a careful and well-motivated exposition of the
underlying mathematics, namely, the theory of continuous
Markov processes. Section II gives such an exposition for
students who have only the usual background in ordinary
calculus. The scope of the exposition is limited to developing
only those results that will actually be required. This math-
ematical machinery is then applied to Brownian motion in
Sec. III and Johnson noise in Sec. IV, with all the standard
results being deduced in an efficient and transparent manner.
Among those results are fluctuation—dissipation formulas,
auto-covariance transport formulas, spectral density formu-
las, Nyquist’s formula, the notions of white noise and 1/f>
noise, and a numerical simulation algorithm that is simple
and accurate. A byproduct of this exposition is a clearer per-
spective of the relation between the two approaches to
Brownian motjon originally advanced by Einstein' and
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Langevin.® It was their papers that gave birth to the “sto-
chastic generalization” of ordinary calculus that we know
today as continuous Markov process theory.

II. MATHEMATICAL FOUNDATIONS

A. The processes of ordinary calculus

Much of science and engineering is based on the presump-
tion that some physical quantity X evolves with time ¢ ac-
cording to a differential equation of the form

dX(r)
dt

where A is some smooth function of its two arguments. An
equivalent way of expressing this dynamical behavior is to
say that

X(t+dt)y=X(t)+A(X(t),t)dt, (2.2)

where dt is a non-negative infinitesimal, i.e., a real variable
that is confined to some interval [0,€], with € taken so small
that any higher order dt terms on the right side of Eq. (2.2)
are rendered negligible. The nonnegativity of dt reflects the
fact that time is something we perceive to be always increas-
ing. We generally refer to any function X of time ¢ as a
process.

Although Eq. (2.2) might be held by some to be math-
ematically ““less respectable” than Eq. (2.1), it evidently
plays the conceptually useful role of an update formula for
the process X: If we know the value of X at the current time
t, then Eq. (2.2) allows us to compute the value of X at any
infinitesimally later time ¢+ d¢. The fact that this update for-
mula gives X(z+dt) unequivocally prompts us to call the
process “deterministic.” The fact that the update formula
implies that X (¢ +dt)—X(t) as dt—0 prompts us to call the
process “continuous.” And the fact that the update formula
does not require for the prediction of X(¢+dt) the value of
X at any time before ¢ prompts us to call the process “memo-
ryless;” i.e., the process does not have to “remember” any of
its earlier values explicitly in order to advance itself from
time ¢ to time #+dt. So Eq. (2.2), and hence also Eq. (2.1),
define a continuous memoryless deterministic process X(t).
Such processes are the traditional objects of study of ordi-
nary differential calculus.

=A(X(1),1), (2.1)
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We shall be concerned here with generalizing Eqgs. (2.1)
and (2.2) so that they describe a process X that is stochastic
rather than deterministic. A continuous memoryless stochas-
tic process is called a continuous Markov process. For such a
process, we can assign definite probabilities to all possible
values of X(¢+ dt) knowing the values of ¢, dt and X(¢), but
those probabilities cannot be ‘‘sharpened” by taking cogni-
zance of any values of X before time .

We shall find that the evolutionary character of the vari-
able ¢ gives rise to some surprisingly strict limitations on
how Egs. (2.1) and (2.2) can be stochastically generalized.
Such limitations are in fact already implicit in those formu-
las. For instance, the formula

X(t+dt)=X(t)+A(X(2),t)(dt)"? (2.3a)

might appear to define a continuous memoryless determinis-
tic process X quite as ably as does Eq. (2.2) (although cer-
tainly not the same process), but that is actually not so. The
problem with Eq. (2.3a) is not that there is some law against
taking the square root of an infinitesimal variable (because
there is not), nor that the process so defined would have no
derivative (for we need not insist @ priori that all continuous
memoryless deterministic processes be differentiable). The
problem with Eq. (2.3a) is rather that, as an “update” for-
mula, it is rot self-consistent. Observe that Eq. (2.3a) would
update the process from time ¢ to time ¢+ 3d¢ as

X(t+ ) =X(1)+A(X(1),t)(3de)'?, (2.3b)

and from time ¢+ 3dt to time t+dt as

X(t+dt)=X(t+5dt)+A(X(t+ 5dt),t+ 3dt)(3dt) V2.
(2.3¢)

By simply substituting Eq. (2.3b) into the right side of Eq.
(2.3¢) and then invoking the hypothesized smoothness of the
two functions A and X, we obtain, to lowest order in dt,

X(t+dt)=X(t) +22A(X(¢),1)(dt)". (2.3d)

But this is inconsistent with Eq. (2.3a).

An acceptable process update formula, when applied first
from ¢ to t+ adt (0<a<1) and then from ¢+ adt to t+dt,
must always give the same result, at least to lowest order in
dt, as when it is applied directly from ¢ to ¢+ d¢. In Sec. I C
we shall see that this self-consistency condition constrains all
continuous memoryless deterministic processes to evolve ac-
cording to equations of the form (2.1) and (2.2), and con-
strains all continuous memoryless stochastic processes (i.c.,
all continuous Markov processes) to evolve according to
generalizations of Eqgs. (2.1) and (2.2) known as ‘““Langevin
equations.”

We remark that our restriction here to processes that are
“memoryless” is not quite so limiting as it might appear.
Many nonmemoryless processes are components, or func-
tions of one or more components, of multivariate memory-
less processes. In the deterministic case this is a direct con-
sequence of the fact that any nth order ordinary differential
equation for a variable u(t) can always be written as a first-
order ordinary differential equation for the n-dimensional
vector variable v()=[u(t),u’(t),....u" D(#)]. An ex-
ample is the position x and velocity v=dx/dt of a classical
particle in a force field F(x,v,t): neither x nor v is in general
memoryless by itself, but the pair [v(z),x(¢)] satisfies time-
evolution equations of the forms (2.1) and (2.2), and hence
constitutes a bivariate continuous memoryless deterministic
process. Our focus in what follows will be exclusively on
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univariate memoryless processes, but we should keep in
mind that many nonmemoryless processes in nature should
be treatable by extending our univariate results to the multi-
variate case.

B. Random variables

As will become clear in the sequel, a continuous Markov
process X(¢) is what is known as a “random variable.” Al-
though most students of physics have some knowledge of
random variables, that knowledge tends to be spotty and con-
fused, and occasionally even erroneous. We shall briefly
summarize here the minimum that one needs to know about
random variables in order to understand continuous Markov
process theory. All of this material is widely known and
treated in many introductory textbooks. The particular didac-
tic approach taken here is one that has been presented in
detail by the author elsewhere,'? but probably most students
will be content to accept these random variable results with-
out proofs.

We say that Y is a random variable with density function
P if and only if P(y)dy equals the probability that a “‘sam-
pling” of Y will yield a value between y and y+dy; sym-
bolically, P(y)dy=Prob{Y e(y,y+dy)}. Notice that we
distinguish between the random variable Y and the possible
values y which that random variable may exhibit when it is
sampled.

The density function P specifies the shape of the normal-
ized frequency histogram that one would get by plotting a
very large number of samples of Y. A random variable is
completely specified by its density function, and there are as
many different random variables Y as there are different his-
togram shape functions P. If P depends parametrically on
one or more variables a, so that P=P(y;a), then we may
write Y=Y (a).

The average of any function # with respect to the random
variable Y is denoted by (A(Y)), and is defined (when it
exists) by

M
(h(Y))= lim ;—42 h(y®), (2.4a)
=1

Mo
where y is the value obtained in the ith sampling of Y.
This average can also be computed as

(h(Y))= J' h(y)P(y)dy. (2.4b)
The average (Y*) is called the kth moment of Y. The first
moment (Y) is also called the mean of Y, and is sometimes
written mean{Y}. The variance of Y is defined by

var{Y}=((Y —(Y))})=(Y2)—(Y)?, (2.5)

and, when it exists, is always nonnegative. The square root
of var{Y} is called the standard deviation of Y, and is written
sdev{Y}; it provides a usually reasonable measure of the
spread or dispersion of the sample values of Y about its
mean. If var{Y} happens to be zero, then every sampling of
Y will yield the same value, and we say that Y is a sure
variable; the density function of a sure variable is a Dirac
delta function centered at the (unique) sample value.

We say that n random variables Y,....Y, have joint
density function P if and only if P(yy,...,y,)dy;...dy,
=Prob{Y,e[y;,y;+dy;) for all i=1 to n}. Averages with
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respect to Y,,...,Y, are defined analogously to the univariate
case; in parucular the covariance of two random variables
Y, and Y, is by definition the average

cov{Y(, Y} =((Y;— (Y )(Y,—(Y2)))
=(Y,Y2) — (Y1 }(Y2). (2.6)

We say that Y, and Y, are statistically independent if and
only if a knowledge of the result of sampling one will not
help us to predict the result of sampling the other. In that
case their joint density function P(y;,y,) factors into two
single-variate functions, and cov{Y,,Y,}=

Random variables can be functionally manipulated just
like ordinary sure variables. If Y,,...,Y, are n random vari-
ables with joint density function P, and if f is some ordinary
function, then Z=f(Y,...,Y,) is.deﬁned to be the random
variable whose sample values z'” can be computed from
simultaneous sample values of Yl, ,Y, according to

2D =7,...,y'Y). The trick lies in computing the den51ty
function Q of thlS random variable Z. It turns out that'? Q is
given in terms of the two functions P and f by the formula

0= [ ayi | dypvisy

Xz~ f(¥150-2¥n))> 2.7)

where & is the Dirac delta function. This formula describes
the functional transformation of an n-variate random variable
Y to a univariate random variable Z, and it has a straightfor-
ward generalization to the case where the dimension of Z is
any positive integer m: One merely replaces the single delta
function with a product of m delta functions, one for each
component of Z. But the integrations in these formulas are
often quite difficult to carry out. Much of practical random
variable theory consists of obtaining and cataloging the
many specific consequences of such integrations. One easy
(and instructive) consequence of the one-to-one transforma-
tion formula is that the mean of the random variable
Z=h(Y) is identically equal to the average of the function A
with respect to the random variable Y as given by Eq. (2.4b).
Happily, we shall not have to compute any integrals like Eq.
(2.7) here, but we shall quote below three widely known
results of such computations that we shall require later.

Of all possible random variables Y, the one that will be
most important for our work here is the normal (or Gauss1an)
random variable Y =N(m,d?). Its density function is given
by

1 (y—m)?
P(y)= PO CXP( - T) , (2.8)

and one can show by using the foregoing formulas that this
random variable has mean m and variance 0. The normal
random variable N(0,1)=N will be referred to as the unit
normal random variable. The normal random variable
N(m,0) is just the “sure” variable m.

Three well-known functional transformation results in-
volving normal random variables that we shall need later are
the following: First, for any two numbers « and B, we have

a+ BN(m,0?)=N(a+ Bm,B*d?). (2.9)

This is a straightforward consequence of Eq. (2.7) for the
case n=1. In particular, recalling our definition of the unit
normal random variable N=N(0,1), we have

a+BN=N(a,p?). (2.10)
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Second, if N(m,,07) and N(m,,a3) are statistically inde-
pendent, then

N(m, ,0%)+N(m2,0'§)=N(m1+m2,0%+ 0'%). (2.11)

This is a more complicated consequence of Eq. (2.7) for the
case n=2. Actually, the additivity of the means and vari-
ances expressed in Eq. (2.11) holds for statistically indepen-
dent random variables of any kind; however, among all
classes of random variables whose means and variances ex-
ist, only normal random variables preserve their class under
addition.

It follows from theorems (2.9) and (2.11) that any linear
combination of statistically independent normal random
variables is itself normal. (This statement is also true even if
the normal random variables being summed are not statisti-
cally independent, but the variances then do not combine so
simply.)

Finally we have the celebrated central limit theorem. This
theorem asserts that the sum of any K statistically indepen-
dent (but not necessarily normal) random variables with fi-
nite means and variances will become a normal random vari-
able in the limit K—. This theorem can be proved using
Eq. (2.7), but the proof is rather involved.!?

C. Continuous Markov processes and their Langevin
equations

A stochastic process X is a random variable whose density
function depends parametrically on time ¢; so if ¢, and ¢, are
two different instants of time, then X(¢;) and X(¢,) are in
general two different random variables. We say that X is a
continuous memoryless stochastic process, or a continuous
Markov process, if and only if the following three conditions
obtain:

(i) The increment in X from any time ¢ to any infinitesi-
mally later time ¢+d¢ is “memoryless,” in the sense that it
depends only on t, dt and the value of X at ¢; thus, we can
meaningfully define the conditional increment in X by

E(dt;x,t)=X(t+dt)—X(t), given that X(t)=x.

(2.12)

(ii) The random variable E(dt;x,t) depends “smoothly”
on the three variables dt, x, and .

(iii) X is “continuous” in the sense that E(dt;x,t)—0 as
dt—0 for all x and ¢.

The following theorem shows that the above three condi-
tions conspire with the earlier mentioned requirement of self-
consistency to impose a surprisingly rigid mathematical form
on E(dt;x,t). That form will give us the stochastic generali-
zations of Egs. (2.1) and (2.2).

Theorem. The defining conditions (i), (ii), and (iii) of a
continuous Markov process X imply that the conditional in-
crement (2.12) must have the analytical form

E(dt;x,t)=A(x,t)dt+DY(x,t)N(¢t)(dt)'2. (2.13)

Here A(x,t) and D(x,t) can be any two smooth functions of
their arguments, with D(x,t) non-negative. And N(¢) is a
temporally uncorrelated unit normal random variable; i.e.,
N(t)=N(0,1), and N(2) is statistically independent of N(¢')
if t#1¢".

The proof of this theorem is given in the Appendix. In
brief, the proof divides the time interval [¢,£+dt) into n— o
equal subintervals, and then demands that the increments in
those subintervals sum to give the increment over the full
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interval. The normality of random variable N(¢) then arises
from the central limit theorem. The peculiar square root of
dt, which we earlier found to be untenable in the context of
Egs. (2.3), arises here because in adding statistically inde-
pendent random variables one must add variances rather than
standard deviations.

If we insert into the left side of Eq. (2.13) the definition of
E in Eq. (2.12), which definition also allows us to replace x
with X(¢), we immediately obtain

X(t+dt)=X(t)+A(X(¢t),t)dt

+DV(X(1),6)N(t)(dt)". (2.14)

This equation is called the (standard form) Langevin equa-
tion for the process X. It is evidently an “update” formula
for X, and so is the stochastic generalization of Eq. (2.2)."
To actually use the Langevin equation as an update formula,
.one would simply substitute for N(¢) a sample value of the
random variable N(0,1) and then carry out the indicated
arithmetic operations. But, as we shall see later, Eq. (2.14)
also has other uses. The function A(x,?) in Eq. (2.14) is
called the drift function of the process, and the function
D(x,t) is called the diffusion function.

That the process X defined by the update formula (2.14) is
continuous, memoryless, and stochastic is apparent from the
form of that equation. It follows from the constructive nature
of the proof given in the Appendix that the update formula
(2.14) satisfies the self-consistency condition mentioned just
after Eq. (2.3d), and moreover that it is not possible to alter
the form of Eq. (2.14) without violating that self-consistency
condition.

It might seem that we ought to drop the dt term from the
right side of Eq. (2.14) on the grounds that it will be vanish-
ingly small compared to the (dt) term. But that would be
wrong; because, the (dt)l/ 2 term is multiplied by the random
variable N(t), which, being about as often ne,%atlve as posi-
tive, greatly diminishes the effect of the (dt) " term over a
succession of many dt increments. The long-range effects of
the weak-but-steady dr term and the strong-but-erratic
(dt)"? term are comparable if the functions A and D are of
comparable magnitudes.

Clearly, the functional forms of A and D completely de-
fine the process X. A comparison of the two update formulas
(2.14) and (2.2) shows that the processes of ordinary differ-
ential calculus comprise the D=0 subclass of continuous
Markov processes; thus, all continuous memoryless deter-
ministic processes have update formulas of the form (2.2).

Although the process X defined by the Langevin equation
(2.14) is continuous, it is not in general differentiable. This
can be seen by rearranging Eq. (2.14) to read

DYX(X(1),t)N(1)

X(t+dt)—X(1)
(dt)l/Z

2t =AX(1),0)+

(2.15)

Obviously, the d¢— 0 limit of this equation will not exist in
any conventional sense unless the diffusion function D van-
ishes identically, in which case X would be deterministic. A
truly stochastic continuous Markov process is an example of
a function that is everywhere continuous but nowhere differ-
entiable. In spite of this fact, the heuristic appeal of the no-
tion of the derivative is so great that it has become customary
to pretend that dX/dt exists even when D(x,¢)>0. This is
accomplished through the following ruse: Since theorem
(2.9) implies that
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N(t)
( dt ) 12
then if we define the Gaussian white noise process I'(t) by

I'(¢)= lim N(0,1/d¢t), (2.16)
dt—0

=(d)T2N(0,1)=N(0,(dt) ™),

we may formally take the dt—0 limit in Eq. (2.15) and
obtain

dX(t)
dt

=A(X(t),0)+DVA(X(1),)[(1). (2.17)
We call Eq. (2.17) the (white noise form) Langevin equation.
It is obviously the stochastic generalization of the determin-
istic differential equatlon 2.1).

Two “averaged”'* properties of Gaussian white noise, as
defined in Eq. (2.16), are

(T(£))=0
and
(T(OT(e+1"))=68(t"). (2.18b)

The validity of Eq. (2.18b) for ' #0 follows from the tem-
porally uncorrelated nature of the zero-mean process I'(f).
The validity of Eq. (2.18b) for ' =0 follows from the vari-
ance of I'(¢) being 1/dt in the limit d¢—0, in which limit we
can write heuristically 8(0)dt=1, or 1/dt= 8(0).

We shall more frequently use the following “averaged”'*
properties of N(¢), which hold because N(¢) is a zero-mean,
unit-variance random variable that is statistically indepen-
dent of N(t') for all ¢’ #¢, and thus also statistically inde-
pendent of X(¢') for all t'<t:

(2.18a)

(N(2))=0, (2.19a)
(N*(t))=1, (2.19b)
(X(¢')N(1))y=0 for all ¢t'=¢t. (2.19¢)

It should be obvious from Eq. (2.16) that the white-noise
form Langevin equation (2.17) is on much shakier math-
ematical ground than the standard-form Langevin equation
(2.14), which is an ironic reversal of roles with respect to the
deterministic formulas (2.1) and (2.2). In fact, there is virtu-
ally nothing that can be done with the white-noise Langevin
equation that cannot be done with more mathematical rigor
using the standard-form Langevin equation; so, it might well
be argued that Eq. (2.17) is nothing more than a mnemonic
for Eq. (2.14). But old habits die hard, and for many physical
applications we find this mnemonic to be useful

By means of a rather lengthy argument,’ it can be shown
that the density function P(x;¢) of the random variable X(¢)
defined by Egs. (2.14) and (2.17) satisfies the partial differ-
ential equation

i i A P
o Pt == - [Ax.0P(x;0)]

14
+ 3 72 [D(x,0)P(x;t)].
This is called the (forward) Fokker—Planck equation. Like
the Langevin equation, it serves as a time-evolution equation
for the continuous Markov process X with drift function A
and diffusion function D. We shall not discuss this equation,
since we do not require it for our work here.

(2.20)
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Finally we note that, although a continuous Markov pro-
cess X does not have a mathematically proper derivative, it
does have a mathematically proper integral. The time inte-
grai Y of X may be defined formally through the differential
equation

dY(1)

—;h—=X(t),

or more practically through the equivalent update formula
Y(t+dt)=Y(t)+X(¢t)dt. (2.21b)

Since Y by definition has a mathematically proper derivative,
then Y is not itself a continuous Markov process; this can
also be seen by noting that the update formula (2.21b) for Y
does not have the Langevin form (2.14). (But it turns out that
a continuous Markov process X and its integral Y together
form a bivariate continuous Markov process.)

(2.21a)

D. The Ornstein—Uhlenbeck process

A continuous Markov process whose drift and diffusion
functions have the forms

1
Alx,t)=— . and D(x,t)=c, 2.22)
where 7 and ¢ are two positive constants, is called an
Ornstein—Uhlenbeck (O-U) process with relaxation time 7
and diffusion constant c. The O-U process turns out to be
central to the mathematical descriptions of both Brownian
motion and Johnson noise. And conveniently, the O-U pro-
cess happens to be one of the relatively few continuous Mar-
kov processes that admits a complete, closed-form analysis.
The following detailed review of that analysis may seem at
times to be a bit tedious, but the effort spent in assimilating
it will be repaid later.
Equations (2.14) and (2.17) evidently give

X(t+dt)=X(t)— lTX(t)dt+ cPN(t)(dt)? (2.23)
and
dx 1
d(tt) =-- X(8)+ T (1) (2.24)

as the equivalent forms of the Langevin equation for the
O-U process. To solve these equations subject to the initial
condition X(#y)=x,, we begin by observing that Eq. (2.23)
expresses X(t+dt) as a linear combination of X(¢) and
N(¢). For t=t, those two random variables are statistically
independent and normal [since X(#y)=x,=N(x(,0)], so by
Egs. (2.9) and (2.11), X(#;+dt) must be normal. Then
X(ty+2dr), being a linear combination of the two statisti-
cally independent normal random variables X(z,+dt) and
N(to+dt), must also be normal. By induction, we infer that
the O-U process X(t) is normal for all t>t,.

To find the mean and variance of the normal random vari-
able X(r), we begin by taking an average'* over Eq. (2.23).
This gives, because of Eq. (2.19a),

1
(X(+de))=(X(6))~ —(X(1))dt.

Transposing the first term on the right, dividing through by
dt and then letting dr—0, we obtain an ordinary differential
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equation for (X(#)) whose solution for the initial condition
(X(tg))=x, is
(X())=xge U7/ (t=1). (2.25)

Next we square Eq. (2.23). This gives, to first order in dt,
2
X2(t+dt)y=X*(t)— p X2()dt+ 22X ()N(£)(dr)1V?

+cN?(t)dt.
Averaging this equation using Eqs. (2.19b) and (2.19¢) gives

2 —{Y2 __% 2
(X*(t+dt))y=(X*(1)) . (X*(t))dt+cdt.

This eguation can be converted into a differential equation
for (X°(¢)) that can easily be solved subject to the initial
condition (X*(o))=x2. From that solution and the formula
for (X(¢)) in Eq. (225), we calculate var{X(?)}
=(X7(1)) = (X(1))* to be
cT

var{X(t)}= > (1—e 207y (1=¢,). (2.26)
So, since X(¢) is normal, we conclude that the O-U process
with relaxation time 7, diffusion constant ¢ and initial con-
dition X(z5)=x, is

cT
X(8)=N| xpe™ 707, 5= (1—e 2070/ | (121).

(2.27)

Notice that the relaxation time 7 characterizes the time scale
over which the mean and variance of X(¢) “relax” to their
respective asymptotic (¢— ) values of 0 and ¢ 7/2.
The auto-covariance of X(t) is defined to be
cov{X(#1),X(£2)}=(X(,)X(13)) — (X (21) (X (t,))
(to=t=1,). (2.28)

For the O-U process, the second term on the right can be
computed from Eq. (2.25). To compute the first term, we first
put t=t, and dt=dt, in Eq. (2.23), and then multiply
through by X(¢,):

1
X(t)X(t2+dt) =X(1)X(1) — — X(11)X(12)dt,

+c X ()N (1)(dy) 2.

Averaging this equation using Eq. (2.19c) leads to the differ-
ential equation

d 1
dr, (X(£)X(t3))=— e (X(21)X(1)).

We can now compute (X(#,)X(t,)) as the solution to this
differential equation subject to the initial condition
(X(t:)X(t,=1,))=(X*(t,)), which can be computed from
Egs. (2.25) and (2.26). Upon substituting that result into Eq.
(2.28), we find after a bit of algebra that

c
cov{X(ty),X(t3)}= 77 e~ (2mn)iT(q — e~ 21107

(tosty<ty). 2.29)

This result shows that if #, — ;> 7, then X(¢,) and X(¢,) will

be highly correlated or effectively uncorrelated according to
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whether #,—¢, is much less than or much greater than 7. So
the relaxation time 7 may also be regarded as a “decorrela-
tion time” for the O-U process X.

By proceeding similarly with the pair of update formulas
(2.23) and (2.21b), we can derive explicit formulas for the
mean and variance of the integral Y of the O-U process X.
It is easy to deduce from either of Egs. (2.21) that

d(Y(n))/dt=(X(1)},
whence, taking Y(z,)=0,

)= ey,

But computing var{Y(¢)} is rather more involved: By squar-
ing Eq. (2.21b), retaining only terms up to first order in dt,
and then averaging, we find that

(Yz(t))=2f:(Y(t’)X(t’))dt’.

To compute the integrand here, we first multiply Egs. (2.21b)
and (2.23) together and then average the result. Again retain-
ing only terms up to first order in dt, and using the fact that
N(#) is statistically independent of Y(¢), we find that

d 1
= (Y(OX())= =~ (Y(OX(1)+(X*(1)).

Since (X?*(¢)) is known from Egs. (2.25) and (2.26), we can
solve this differential equation explicitly for the initial con-
dition (Y (#3)X(¢y))=0. Substituting that solution into the
preceding equation and then integrating will finally give an
explicit formula for (Y>(¢)). The result of all these algebra-
ically straightforward but somewhat tedious calculations is

(Y()y=xor(1—e U70/7)  (t=1g), (2.30)
var{Y(t)}=c7'2[(t—t0)—2T(1—e_(‘_’o)”)
+-25(1—e"2<'*'0>/f)} (t=1,). (2.31)

The O-U process X(¢) is said to be a stable process be-
cause, according to Eq. (2.27),

X*(t)= lim X()=N(0,c7/2)

tO——>~—w

(2.32)

exists and is independent of both ¢ and x,. But notice that
what ultimately stops changing with time here is not the
value of the process, but only our statistical predictions
about that value. Taking the #y— — o limit of Eqs. (2.28) and
(2.29), we get for the auto-covariance of X*(¢),

cov{X*(t1),X* ()} =(X*(t,)X*(t,))

cT
. e-(lz—tl)/T

(t;s1). (2.33)

Equations (2.30) and (2.31) show that the integral Y(¢) of an

O-U process satisfies
lim {Y(z))=x,7,

1—104000

lim var{Y()}=cr(t—ty).

(2.34)

The asymptotic ¢ dependency of var{Y(¢)} shows that Y(¢)
here is not a stable process.
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Finally, we want to establish two important theorems for
O-U processes. Both of these theorems involve also another
species of continuous Markov process, namely the one for
which

A(x,t)=0 and D(x,t)=c, (2.35)

where ¢ is a positive constant. Such a process is called a
driftless Wiener process with diffusion constant ¢. For this
process, the Langevin equations (2.14) and (2.17) evidently
read

X(t+dt)=X(1)+c*N(£)(dt)"?,
and

dX(:

% =c!2r(¢).
By using the same kind of reasoning that led from the O-U
Langevin equation (2.23) to the result (2.27), one can deduce
from Eq. (2.36a) that the driftless Wiener process with dif-
fusion constant ¢ and initial condition x is the normal ran-
dom variable'®

X(£)=N(xg,c(t—1to)) (2.37)

Now for the two promised theorems about O—U processes.
First we have the rather obvious

Infinite-tau Limit Theorem. The O-U process X(¢) with
relaxation time 7 and diffusion constant ¢ becomes, in the
limit m—oo, the driftless Wiener process with diffusion con-
stant c¢.

Proof: Observe that, in the limit 7, the O—U process
characterizing functions (2.22) become identical to the drift-
less Wiener process characterizing functions (2.35). Or, ob-
serve that the 7—oo limit of the O-U formula (2.27) gives
the driftless Wiener formula (2.37).

Somewhat more intriguing is the

Zero-tau Limit Theorem. The O-U process X(¢) with
relaxation time 7 and diffusion constant ¢ becomes, in the
limit

(2.36a)

(2.36b)

(tp=<t).

2= (2.38)
the process €l'(¢), where I'(¢) is the Gaussian white noise
process. And the time integral Y(¢) of X(¢) becomes in this
limit the driftless Wiener process with diffusion constant €.

Proof: A simple algebraic rearrangement of the O-U
Langevin equation (2.24) gives

dX(r)
dt

The limit (2.38) of this equation evidently gives X(¢)
= e[ '(¢). The definition (2.21a) of Y(¢) then reads dY(t)/d¢
=€I'(¢t), and a comparison of this with Eq. (2.36b) shows
Y(?) to be the driftless Wiener process with diffusion con-
stant €. (Section ITE contains another proof of this theo-
rem.)

7—0 with 7¢ e(constant),

+X()=7cT ().

T

E. Spectral density functions

One advantage that a Markovian description of Brownian
motion and Johnson noise offers over a standard statistical
thermodynamics description is some insight into the fre-
quency spectrums of the fluctuations. We now review the
mathematical basis of spectral analysis.

Let X (#) be a zero-mean stochastic process, not necessar-
ily Markovian, that is stationary in the sense that all of its
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moments are independent of ¢. We call the constant second
moment (X>(t))=o" the intensity of X (t). As is discussed
in many textbooks,” the auto-covariance

(X(OX(t+t")=Cx(t') (t'=0), (2.39)

will, as a consequence of the stationarity of X(¢), be inde-
pendent of ¢, and will have a positive-frequency Fourier am-
plitude Sy(¥) which is such that'’

Cx(t')=J0wSX(V) cos(2mvt')Ydv (¢'=0), (2.40)

and

SX(V)=4J Cx(t') cos(2muvt’)dt’ (v=0). (2.41)
0

Now, by setting ' =0 in both of Eqs. (2.39) and (2.40),
we deduce that

(X2(2))= fo Sx(v)dv. (2.42)
This is the Wiener—Khintchine theorem: Sy(v)dv gives the
portion of the intensity (X2(¢))=o? of X,(¢) that is due to
(positive) frequencies between v and v+ dv. For that reason,
the function Sy(») in Eq. (2.41) is called the spectral density
function of the stationary process X (¢). But it is important to
note that Sy(v) gives the frequency spectrum of (X7(¢)), not
of X (1) itself.

Two examples will be relevant to our work here.

(a) The process aI'(¢), where « is any constant and I'(¢)
is the Gaussian white noise process, is a zero-mean, infinite-
intensity, stationary process, by virtue of definition (2.16)
and theorem (2.9). From Egs. (2.39) and (2.18b), we com-
pute the auto-covariance of al'(¢) as

C.r(t')=(al'(t)al(t+1t"))
=a¥ (T ()T (t+1'))=a?8(t").

Substituting this into Eq. (2.41) and then integrating over ¢’
from 0 (not —=) to «, we get

S.r(v)=2a% (v=0). (2.43)

The fact that the spectral density function of aI'(¢) is a
constant for all frequencies v=0 is consistent with the fact
that aI'(t) is an infinite-intensity process. This frequency-
independent intensity spectrum is of course the reason why
the process I'(¢) is referred to as “white” noise.

(b) The fully relaxed O-U process X*(¢) in Eq. (2.32) is
evidently a zero-mean stationary stochastic process with in-
tensity ¢ 7/2. Its auto-covariance is, according to Egs. (2.39)
and (2.33),

Cx(t)y=(c7/2)e """,

Substituting this into Eq. (2.41) and then integrating over ¢’,
we obtain for the spectral density function of the fully re-
laxed O-U process with relaxation time 7 and diffusion con-
stant c,

2¢7
1+(2mrv)?

It is. easy to verify that the integral of this function over all
v>0 indeed gives the intensity c 7/2. This function is graphed
for r=c=1 in Fig. 1. The linear graph in Fig. 1(a) displays
the “density” property described by Eq. (2.42), but the log—

Sx(v)= (v=0). (2.44)
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Fig. 1. Plots of the spectral density function (2.44) of the fully relaxed O-U
process X *(¢) with relaxation time 7=1 and diffusion constant c=1. In the
linear plot (a), the area under the curve inside any frequency band [»,,,] is
numerically equal to the portion of the intensity (X*2(t))=c7/2 due to
frequencies within that band. The log—log plot (b) shows a “knee” at fre-
quency 1/2mrr, below which the curve tends to slope 0 and above which it
tends to slope —2.

log graph in Fig. 1(b) is more often referenced. It shows a
leg-like curve with a “knee” at frequency v=_277) "}, below
which the curve has slope 0 and above which it has slope
—2. The frequency region below the knee is called the
“white noise” region, and the frequency region above the
knee is called the “1/f2 noise” region.

In the limit (2.38), where 7—0 with rc"?*=¢, in which
limit the “fully relaxed” condition (t—¢;)> 7 will be satis-
fied for any >ty,, Eq. (2.44) evidently becomes
Sx(v)=2€. This, by Eq. (2.43), implies that in this limit the
O-U process X(t) becomes €l'(¢); thus we have another
proof of the zero-tau limit theorem of Sec. II D.

Since the intensity of the driftless Wiener process (2.37) is
proportional to (¢—t,), then that process is not asymptoti-
cally stationary; so we should rot expect the driftless Wiener
process to have a spectral density function. But Eq. (2.44)
seems to belie this, implying as it does that the spectral den-
sity function of a full;f relaxed O—U process approaches in
the limit 7—o (c¢/27*)v 2. That would seem to imply, by
the infinite-tau limit theorem in Sec. II D, that a driftless
Wiener process should have spectral density function
(c/2m*)v™2, i.e., that it should be a pure 1/f2 noise process.
But this assertion is really tenable only as a high-frequency
approximation to Eq. (2.44); because, an O-U process can-
not be considered to be “fully relaxed” unless (1—1ty)> 7,
and that condition obviously becomes problematic in the re-
quired limit 7—co,
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Finally, we note that the definition (2.39) implies that
Cox(t')=a’Cy(t'). This allows us to deduce from Eq.
(2.41) the often used result,

Sax(v)=a’Sx(v). (2.45)

F. Numerically simulating an Ornstein—Uhlenbeck
process

The key to making a numerical simulation of an O-U
process X is to find a way of calculating, from the value of X
at any time ¢, its value at a slightly later time ¢+ Atz. An
obvious but approximate way of doing this is to simply
“finitize” dt in the standard-form O-U Langevin equation
(2.23). That gives

X(t+A)=X(t)— 7 X(0)At+c (A2 (2.46)

Here, n denotes a sample value of the random variable
N=N(0,1), and the dot over the equal sign denotes an ap-
proximate equality that becomes exact in the limit Ar—0.

For many continuous Markov processes, a finitized Lange-
vin update formula such as Eq. (2.46) is about the best that
one can do, and one must consequently worry about just how
small At needs to be in order to get results that are suffi-
ciently accurate. But for O-U processes there is an update
formula that is exact for any positive value of Ar. To derive
that formula, we begin by replacing, in Eq. (2.27), ¢ by
t+At, ty by ¢, and thus also x, by X(¢); that gives

c
X(t+At)=N(X(t)e_(”T)A’, 77 (1 —e—<2/T)A’)).

Now invoking theorem (2.10), and letting n denote, as in Eq.
(2.46), a sample value of N=N(0,1), we infer from this last
equation that

172
cT
7 (l_e—(Z/T)At) n.

(2.47)

This is the exact O-U update formula. It is not difficult to
show that if Ar<<7, then Eq. (2.47) reduces, to first order in
At, to the approximate update formula (2.46).

Both update formulas (2.46) and (2.47) evidently require
the ability to generate sample values n of the unit normal
random variable N(0,1). A simple exact method of doing
this, albeit in a pairwise fashion, is as follows:'® First gener-
ate two statistically independent sample values r; and r, of
the unit-interval uniform random variable; then calculate the
two values

s=[21In(1/r;)]¥* and 68=2m7r,; (2.48a)

and finally, take as two statistically independent samples of
N(0,1) the values

ny=scosf and n,=ssind.

X(t+At)=X(t)e VDA

(2.48b)

Given some value x, of X at some initial time ¢,, a simu-
lation of the process is realized by iteratively applying either
the approximate updating formula (2.46) or the exact updat-
ing formula (2.47) to compute values of X at times ¢+ At,
to+2At, to+3At, etc. If a fixed value for As is used
throughout the simulation run, then the coefficients of X(r)
and n in both updating formulas will not change with time,
so there will be no advantage in using the approximate up-
dating formula instead of the exact updating formula. The
exact updating formula (2.47) and the exact procedure (2.48)

232 Am. J. Phys., Vol. 64, No. 3, March 1996

for generating values of n give us the following exact simu-
lation algorithm for an O-U process with relaxation time 7
and diffusion constant c:

Step 1. Specify values for 7, ¢, x, At, and some stopping
time 7, . Also specify a “starting seed” for the unit-interval
uniform random number generator used to compute values
for r, and r, in formulas (2.48a).

Step 2. Compute the constant coefficients of X(¢) and n in
the updating formula (2.47):

—(1/7)At

r=e (2.49a)

o= (2.49b)

cT 12
7 (1 _e(Z/T)At)} .

Step 3. Set X=x; and t=0.

Step 4. Write out for plotting the point (£,X).

Step 5. Replace ¢ by ¢+ At. Terminate the simulation if the
new f exceeds fy, -

Step 6. Using the algorithm of Eqs. (2.48), generate a ran-
dom value for n.

Step 7. In accordance with Eqgs. (2.47) and (2.49), replace
X by uX+on.

Step 8. Return to Step 4.

In Fig. 2 we show the results of three numerical simula-
tions of the O-U process, all computed using the foregoing
exact algorithm. For the simulations of Fig. 2(a), we took
r=c=1, x,=0 and Ar=10">. The jagged curve is the
simulated X(¢) trajectory—its theoretically predicted spec-
tral density function is plotted in Fig. 1—and the dotted
curves show the one-standard deviation envelope (X(t))
+sdev{X()} predicted by Egs. (2.25) and (2.26). Notice that
we have not connected successive trajectory points with any
kind of smooth curve, because that would erroneously sug-
gest that the trajectory is differentiable. That no smoothing of
the trajectory occurs on a finer time scale is illustrated by the
simulation of Fig. 2(b), for which the time step At has been
reduced to 10~ In Fig. 2(c) we have reduced 7 to 1073 and
increased ¢ to 10°, thereby leaving the combination €= 7c!?
with the same value 1 as it had in Fig. 2(a), and we have
used the same time step size Ar=107" as in Fig. 2(a). As
predicted by the zero-tau limit theorem (2.38), the process
X(t) has begun to take on the appearance of the Gaussian
white noise process I'(¢), at least when viewed on the ordi-
nate and abscissa scales of Fig. 2(a).

Finally, we note that it is easy to incorporate into the
above algorithm an approximate simulation of the integral Y
of X. This is done simply by finitizing the dt update formula
(2.21b). We would of course have to initialize Y=0 in step
3. And in the main simulation loop we would want to plot
out the point (£,Y) in step 4, and replace ¥ by Y+XA¢
(before updating X) in step 7. The price to be paid for using
this simple updating formula for Y is that Az now must be
taken ““small,” i.e., much less than 71 Figure 3 shows such
a simulation of Y generated in conjunction with the simula-
tion of X in Fig. 2(a), for which Ar=0.001<€ 7. Notice that,
unlike the X trajectory in Fig. 2(a), this Y trajectory is
smooth (i.e., differentiable). The dotted curves in Fig. 3 show
the one-standard deviation envelope (Y(¢))*=sdev{Y ()} as
predicted by Egs. (2.30) and (2.31).

II1. BROWNIAN MOTION

In this section we shall see how continuous Markov pro-
cess theory, as set forth in Sec. II, can be coupled with two
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Fig. 2. Results of three numerical simulations of the O—U process X(¢), alt
made using the exact simulation procedure described in Sec. I1 F. The dotted
curves show the theoretically predicted one-standard deviation envelope
(X(1)) £sdev{X(¢)} as calculated from Egs. (2.25) and (2.26). For (a) we
have taken 7=c=1, x,=0 and Ar=10">. For (b) we have reduced Af to
10™* in order to demonstrate the absence of any smoothing of the X(f)
trajectory on a finer time scale. For (c) we have taken 7=107° and c=10°,
so that 7c'2 has the same value as in (a), in order to illustrate the approach
of X(t) to Gaussian white noise in the limit (2.38).

simple physical assumptions to give a very concise yet re-
markably complete description of the phenomenon of
Brownian motion. But first let us recall how this phenom-
enon was originally analyzed by Albert Einstein in his land-
mark paper of 1905.5%°

A. Traditional approaches

Einstein began by supposing time to increase in discrete
steps of size &¢, which, though infinitesimally small from a
macroscopic point of view, was microscopically large
enough that many fluid molecules will typically collide with
the Brownian particle in a time &¢. The net changes in the
Brownian particle’s position during successive time steps 8t
should therefore be practically statistically independent. Ein-
stein adroitly argued that, under these conditions, the func-
tion 7(x,1), defined so that n(x,)dx gives the average num-
ber of Brownian particles with x coordinates between x and
x+dx at time ¢, should satisfy the equation

on(x,t) D F*n(x,t)
ot a7 3.1)
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wherein the constant D was defined by Einstein to be the
mean-square displacement of the particle in time &t divided
by 2 6t.

Equation (3.1) is called the diffusion equation. 1t is usually
deduced in elementary kinetic theory courses by first defin-
ing D through the purely phenomenological formula

an(x,t)
ox
for the “average flux” of Brownian particles in the x direc-
tion, and then simply substituting this relation into the par-
ticle conservation equation,
on(x,t)  9jx,1)
o ox

Jx(x,t)=-D

Einstein solved his Eq. (3.1) for the initial condition
n(x,ty)x 8(x), and thereby deduced that the mean-square
displacement of the Brownian particle evolves with time ac-
cording to

(X%(t)y=2D(t—ty) (3.2)

The “large-t” restriction on this formula, although often ig-
nored, is important; it is a consequence not of Eq. (3.1), but
rather of the “coarse-grained time” assumption Einstein used
to derive that equation. Historically, the experimental confir-
mation of formula (3.2) provided a clinching piece of evi-
dence for the kinetic molecular hypothesis. But granting that
hypothesis, we now take formula (3.2) to be the phenomeno-
logical definition of the diffusion coefficient D.

Three years after Einstein’s work, Paul Langevin pre-
sented a quite different analysis of Brownian motion,”> which
however led to the same key result (3.2). Whereas Einstein’s
analysis had focused directly on the position of the Brownian
particle, Langevin’s analysis began by considering the parti-
cle’s velocity, a variable that Einstein had scrupulously
avoided. The exposition of Brownian motion given below is
essentially a2 modernized version of Langevin’s analysis, and
it will allow us to see, among other things, how the two very
different approaches of Einstein and Langevin are logically
connected.

(t—1y “‘large’’).

B. Langevin’s hypothesis

Our analysis proceeds from the Aypothesis that the net
force exerted on the Brownian particle in the x direction at

Fig. 3. Results of an approximate simulation of the integral Y(¢t) of the
O-U process X(t), done in conjunction with the simulation in Fig. 2(a).
Note that this trajectory, unlike its companion X(r) trajectory in Fig. 2(a), is
“smooth.” The dotted curves show the theoretically predicted one-standard

deviation envelope (Y(¢)) tsdev{¥(#)} as calculated from Egs. (2.30) and
(2.31).
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time ¢ by the surrounding fluid molecules can be effectively
resolved into two components: (i) a dissipative drag force
—yV(¢t), where V(t) is the x component of the velocity of
the particle at time ¢ and y>0 is some unspecified drag co-
efficient; and (ii) a zero-mean, temporally uncorrelated ran-
domly fluctuating force F(t), which is assumed to be statis-
tically independent of V(¢") for all t'<¢. Letting m denote
the Brownian particle’s mass, we therefore have by Newton’s
second law,

dv(t)
dt

m =—yV(t)+F(1). (3.3)

As we shall see shortly, the drag force — yV(¢) and the
fluctuating force F(t) are not independent of each other. This
is a consequence of the fact that the molecular collisions that
give rise to those two forces simply cannot be separated into
one kind of collision that gives rise only to a drag effect and
another kind that gives rise only to a fluctuating effect. The
hypothesis that the molecular forces on the Brownian par-
ticle can nevertheless be effectively resolved into two such
components is essentially due to Langevin. An elementary
argument in support of Langevin’s hypothesis has recently
been given in this journal,! but of course the ultimate justi-
fication for this hypothesis will have to be found in the ac-
curacy of its predictions.

Writing Eq. (3.3) as

‘—i%= . V(£)+m F(1),

Ty (3.4)

we immediately perceive a close resemblance to the white-
noise form Langevin equation (2.24) of an Ornstein—
Uhlenbeck (O-U) process; indeed, if we define the positive
constant 7 by

m/y=r, (3.53)

and then require the fluctuating force component F(¢) to be
such that

F(t)=mcY?T (1), (3.5b)

where ¢ is some positive constant and I'(¢) is the Gaussian
white noise process (2.16), then Eq. (3.4) would read

dv(e)

T (3.6)

=- % V() +c 7T (¢).

It would then follow that V(¢) is an O-U process with re-
laxation time 7 and diffusion constant c. [Note that the dif-
fusion constant ¢ of the O-U process V(¢) is not the same as
the diffusion coefficient D of the Brownian particle; this will
become obvious in Eq. (3.13b).]

We now observe that requirement (3.5b) is not an addi-
tional assumption! Langevin’s hypothesis that F(¢) is a zero-
mean random function that is independent of V(¢') for all
t'<t renders Eq. (3.4) a manifestly memoryless time-
evolution equation for V(¢). Our theorem at Eq. (2.13) then
implies that the only way for such an equation to be math-
ematically self-consistent is for F(t) to be proportional to an
independent Gaussian white noise process. If F(¢) in Eq.
(3.4) were not proportional to Gaussian white noise, then the
right side of that equation should be exhibiting some overt
dependence on V(') for ¢’ <t.
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C. Fixing 7 and ¢

To express the two constants 7and ¢ in Egs. (3.6) wholly
in terms of physically measurable parameters, we need only
note two facts: First, since the Brownian particle is sur-
rounded by a fluid that is assumed to be in thermal equilib-
rium at absolute temperature T, then according to classical
statistical thermodynamics the velocity of the particle must
eventually be distributed in a Maxwell-Boltzmann fashion;
thus, the particle’s x velocity component V(t) must asymp-
totically approach a normal random variable with mean zero
and variance kT/m, where k is Boltzmann’s constant [see
Eq. (2.8) with y=v, m=0 and o?=kT/m]:

V(t—)=N(0,kT/m). (3.7)

Second, the x displacement of the particle in time (t—¢,),
namely

X(t)Eftt V(¢')dt', (3.8)

must exhibit the experimentally observed diffusive behavior
described by Eq. (3.2); i.e.,

(X2(t—o))=2D(t—t,). (3.9)

But since V(¢) is an O--U process with relaxation time 7and
diffusion constant ¢, then it follows from the O~U property
(2.32) that the asymptotic form of V(¢) will be

V(t—)=N(0,c7/2). (3.10)

Furthermore, it follows from the asymptotic formulas (2.34)
for the integral of an O-U process that the mean of the
square of the time-integral X(¢) of V() will satisfy

(X (t—o))=cT(t—ty). (3.11)

Clearly, the two O—U properties (3.10) and (3.11) will agree
with the respective physical requirements (3.7) and (3.9) if
and only if

cT2=kT/m (3.12a)

and

c™?=2D. (3.12b)

Upon solving Egs. (3.12) simultaneously for 7 and ¢, we
obtain

=7 (3.13a)
and
2 [kT\?
-2z 3.13b
) D(m) (3.13b)

for the relaxation time and diffusion constant of the O-U
process V(1).
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We may now infer from the solution (2.27) of the O-U
Langevin equation, after taking note of Eq. (3.12a), that,
given some initial condition V(¢y)=v,, V(t) for any t>1¢,
will be the normal random variable

kT
V(t)=N| vge~ 7107, ;(l—e‘z(‘_'t"”)) (£=19).
(3.14)

Exact expressions for the mean and variance of the integral
X(¢) of V() follow from the integral O-U formulas (2.30)
and (2.31), after taking note of Eq. (3.12b):

(X(D)y=vor(1—e~U71)7), (3.15a)
var{X(t)}=2D[(t—t0) —27(1—e (7))
T
+3 (l—e‘z““o)”)]. (3.15b)

Numerical simulations of V(¢) and X(¢), leading to graphs
such as those in Fig. 2 for V(¢), and in Fig. 3 for X(#), can
be constructed by employing the algorithm described in Sec.
IIF

D. Implications of the theory

Now let us examine the implications of the foregoing Mar-
kovian picture of Brownian motion. First, by substituting Eq.
(3.13a) into Eq. (3.52) and then solving for 7, we obtain

y=kT/D. (3.16)

This experimentally verified formula, originally discovered
by Einstein, relates the drag coefficient y to the diffusion
coefficient D.

A second implication emerges upon substituting Eq.
(3.13b) into Eq. (3.5b), and then eliminating D in favor of y
using Eq. (3.16):

F(t)=2kTy)VI' (). (3.17)

This is called the fluctuation—dissipation formula. It quanti-
fies the earlier mentioned intimate connection between the
drag coefficient y and the fluctuating force F(¢): The fluctu-
ating force is an increasing function of y, and vanishes iden-
tically if and only if y vanishes. An alternative expression of
this relationship can be obtained by noting that Eq. (3.17)
implies that

(F(O)F(t+1"))=2kTy)}T ()T (t+1¢"))=2kTys(t'),

where the last step invokes Eq. (2.18b)]. Integrating over all
t' and then solving for vy, we get

1 ©

Y= 557 J’ (F(e)F(t+1¢"))ar', (3.18)
a formula that is often encountered in the literature.” Equa-
tion (3.18) in turn leads to Eq. (3.17) under our present hy-
pothesis that F(z) is some constant times Gaussian white
noise.

Another important integral relation, which sometimes gets
confused with Eq. (3.18), is provided by formula (2.33) for
the asymptotic auto-covariance of an O—U process. That for-
mula implies for our O-U process V(¢) that
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i 4 —C_T —t’/T__.B —t'r -
Hm{V(6)V(t+t'))= 5 € e (t'=0),

t—o

where the last step follows from Eq. (3.12b). Integrating this
over all />0 evidently gives

D= r[lim(V(t)V(Ht'))]dt’.
0

1—o®

(3.19)

This is called the velocity auto-covariance formula for the
diffusion coefficient. The quantity in square brackets is usu-
ally referred to as the “equilibrium auto-covariance” of
V(t). Some physicists might prefer to take Eq. (3.19), in-
stead of Eq. (3.9), as the definition of D.

Finally, the asymptotic or equilibrium mean power dissi-
pated by the Brownian particle via the three orthogonal com-
ponents of the drag force is

, 3ykT
Poq=3([ YV () ]V()) =3 YV (0))= —,

- (3.20

where the last step follows from the equipartition theorem of
classical statistical thermodynamics, or equivalently from re-
lation (3.7). Statistical thermodynamics tells us nothing
about the frequency spectrum of this dissipated power, but
our Markovian formulation does: Recalling the formula
(2.44) for the spectral density function of an asymptotic
O-U process, and remembering that the spectral density
function of any stationary process describes the spectrum of
the mean of the square of that process, we conclude from Eg.
(3.20) that the frequency spectrum of the equilibrium power
dissipated by the Brownian particle is

27
Peq(V)=37’Sv(V)=37(m),

P (127 0 321
= = .
eq(¥) 1+ (27mv/y) (v=0), (3:21)
where the last step makes use of Egs. (3.12b), (3.16), and
(3.5a). It is easy to verify that the integral of Eq. (3.21) over
all v>0 gives 3 ykT/m, in agreement with Eq. (3.20). As we
saw in Fig. 1(b), Eq. (3.21) implies that the average equilib-
rium dissipated power is “white” for frequencies well below

y/2mm, and “1/f*” for frequencies well above y/27m.

E. Connection with Einstein’s analysis

To understand the mathematical connection between the
foregoing Langevin treatment of Brownian motion and Ein-
stein’s pioneering treatment of 1905, we begin by observing
from Eq. (3.14) that 7 characterizes the time scale of the
motion of the O—U process V(). But the numerical value of
7, as computed from the formula (3.13a), will usually be very
small from a macroscopic viewpoint. In that case, we can
invoke the zero-tau limit theorem (2.38) for O~U processes
to the following effect: Since 7=0, while the product
Dm [2 [kT\2]\?

—_ ___(_) =(2D)1/2

kT |D

is nonzero, we can approximate the O-U process V(t) as
7c'? times Gaussian white noise:

V(t)~(2D)T'(1). (3.23)

Furthermore, we can approximate the corresponding time in-
tegral of V(¢) by a driftless Wiener process [see Egs. (2.35)-

12

TC = (3.22)

m
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(2.37)] whose diffusion constant is the square of rcl%
X()~N(0,2D(t—1,)). (3.24)

Equation (3.24) is precisely Einstein’s 1905 result: It implies
that the mean-square position of the Brownian particle obeys
Einstein’s formula (3.2); moreover, the probability density
function for the normal random variable (3.24) exactly satis-
fies the diffusion equation (3.1).

So we see that Einstein’s classic analysis of Brownian
motion, with its ‘“coarse-grained time” assumption, is
equivalent to a 7=() approximation of our Langevin analysis.
The precise connection between the two analyses is provided
by the zero-tau limit theorem (2.38). Einstein’s approach is
usually quite adequate for the purpose of describing the po-
sition of a Brownian particle: His key result (3.2) coincides
with the (¢—f,)> 7 approximation of the exact formula
(3.15b), and there is usually no need to take note of the
concomitant (t—t,)<<7 approximation of that formula,
which approximation can easily be shown to be

2D

(Xz(t))z3—7_7 (t=19)  (t—to<7). (3.25)
But, as regards the velocity of a Brownian particle, the ap-
proximate formula (3.23) implied by the Einstein approach is
rather crude. And in cases where the temporal characteristics
of the velocity happen to be important (as they might be for
instance in estimating the magnetic field produced by a hy-
drated ion in an aqueous solution), it would be advisable to
use the exact formula (3.14) for V(¢) instead of the approxi-
mate 70 formula (3.23).

IV. JOHNSON NOISE

The first experimental study of thermally generated elec-
trical noise in a conductor was reported by J. B. Johnson* in
a 1928 issue of the Physical Review. In the very next article
of that issue, H. Nyquist® gave a theoretical explanation of
Johnson’s results. One might be tempted to infer from this
timing of events that the theory underlying Johnson noise is
“immediately obvious,” but that is not so. We shall consider
here the problem of describing Johnson noise in a rigid wire
loop of self-inductance L and resistance R at absolute tem-
perature 7. Although this problem can be formally disposed
of simply by replacing, in the Brownian motion results of
Sec. III, the Brownian particle’s velocity and mass with the
loop’s current and self-inductance, that approach tends to
obscure the unique physical characteristics of the electrical
problem. For example, whereas in the Brownian motion
problem the key phenomenological parameter is the particle
diffusion coefficient D, the natural phenomenological param-
eter in the electrical problem is the loop resistance R, which
is not the electrical analog of D. We shall see below that the
mathematical formalism of Sec. II makes it just as easy, and
considerably more revealing, to start afresh.

A. Langevin’s hypothesis for an electrical circuit

Interactions between the conducting electrons and the
thermally vibrating atomic lattice of the wire give rise to a
temporally varying electromotive force (emf) in the loop,
called the thermal emf. Following Langevin (but not
Nyquist),?2 we hypothesize that this thermal emf can be re-
garded as the sum of two separate emfs, namely a “retarding
emf” and a “random emf”: The retarding emf always op-
poses the instantaneous electrical current I(¢) in the loop,
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and is assumed to have the Ohm’s law form, —RI(¢). The
random emf, denoted by V(¢), is assumed to be statisticaily
independent of the current I(¢') for all ¢’ <¢, and to fluctuate
randomly about a mean of zero. But as we shall see shortly,
the two components —RI(¢) and V(¢) of the thermal emf are
not entirely independent of each other. This is a consequence
of the fact that the microphysical processes that are ulti-
mately responsible for the thermal emf, and which we do not
undertake to examine here, cannot be separated into one
class that is solely responsible for —R/(¢) and another class
that is solely responsible for V(). We shall refer to the nega-
tive of the retarding emf, namely RI(r), as the dissipative
voltage, and to the random emf V(¢) as the Johnson emf.

According to Faraday’s law, any temporal variation in the
current I(¢) will give rise to an induced emf, —d[LI(t)]/dt
= —LdI(t)/dt, in the loop. The requirement that the integral
of the electric potential around the loop must vanish there-
fore gives us the circuit equation:

dI(t)
——=0. (4.1)

Taking the average of Eq. (4.1) gives, on account of the
assumed property (V(¢))=0,

d{1(t))
dt

—RI(t)+V(t)—L

-L =R{I(1)). 4.2)
This equation describes what we would observe experimen-
tally in those common situations where the fluctuations in the
current caused by V(¢) are so small that measured values of
I(t) are indistinguishable from its mean (I(¢)). Equation
(4.2) thus affords a way, at least in principle, of experimen-
tally determining the phenomenological parameter R once L
has been calculated, say, from Neumann’s formula.
Defining the positive constant T by

L/R=r, (4.3a)

and then assuming (for reasons to be explained below) that
the Johnson emf V(¢) can be written

V(t)=Lc T (1), (4.3b)

where I'(¢) is Gaussian white noise and ¢ is some positive
constant, we can evidently bring Eq. (4.1) into the form

di(t)
dt

Comparing this with the O~U Langevin equation (2.24), we
may immediately conclude that /(¢) is an O-U process with
relaxation time 7 and diffusion constant c. We can also see
that the seemingly arbitrary assumption in Eq. (4.3b) is in
fact already implicit in our initial hypotheses. For, according
to our theorem at Eq. (2.13), the circuit equation (4.1), which
is memoryless by the Langevin hypothesis, will be math-
ematically self-consistent only if V(#) is proportional to in-
dependent Gaussian white noise.

=— lT I(t)+c'Pr(v). (4.4)

B. Fixing ¢

With the relaxation time 7 given in terms of the known
parameters L and R, it remains only to determine the value
of the diffusion constant ¢. Defining the fully relaxed or
“equilibrium” current /*(¢) by

I*()= lim I(¢),

tg——o

(4.5)
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where I(t,) is some sure initial value iy, then the stipulation
that the system be in thermal equilibrium at absolute tem-
perature T requires, by the equipartition theorem of classical
statistical thermodynamics,?* that the equilibrium energy of
the loop current be
(SLI**(1))=3kT,
where k is Boltzmann’s constant. Thus, we must have
(I*?(¢)y=kT/L. (4.6b)

But from Eq. (2.32), we know that a fully relaxed O-U
process I*(¢) with relaxation time 7 and diffusion constant ¢
satisfies

(I**(t))y=c/2. (4.7)

The last two equations show that ¢ must be equal to 2kT/L 7.
This, together with Eq. (4.3a), gives

7=L/R

(4.6a)

(4.8a)
and
c=2kTR/L? (4.8b)

as the relaxation time and diffusion constant of the O-U
process I(t).

We can now infer from the basic O-U result (2.27), after
noting from Egs. (4.8) that ¢ 7/2=kT/L, that given the initial
condition I(¢y)=1iy, the current at any time >, will be

I(6)=N| ige~ ®D)—10) H(l_e—z(mm(r—ro))
T L

(r=1y). (4.9)

Exact numerical simulations of I(¢), leading to graphs such
as those shown in Fig. 2, can be constructed by employing
the algorithm described in Sec. II F. '

C. Implications of the theory

Substituting Eq. (4.8b) into Eq. (4.3b) evidently gives
V(1)=(2kTR)"°T(1). (4.10)

This is the fluctuation—dissipation formula. 1t reveals explic-
itly the earlier mentioned intimate connection that exists be-
tween the fluctuating Johnson emf V(¢) and the dissipative
resistance R: they are concomitant, each being an increasing
function of the other. Another way of expressing this inter-
dependence follows by first noting that Eq. (4.10) implies

(V()V(t+1"))y=kTRYT ()T (¢+¢'))=2kTR&(t'),

where the second equality follows from the Gaussian white
noise property (2.18b). Integrating over all ¢’ and then solv-
ing for R yields

1 ©

— r !
R kT f_m(V(t)V(t+t ))dt', 4.11)
a formula that is often encountered in the literature.” Equa-
tion (4.11) in turn leads to Eq. (4.10) under our present hy-
pothesis that V(¢) is some constant times Gaussian white
noise.

Another integral formula involving R, which superficially
resembles Eq. (4.11), can be deduced as follows: The fully
relaxed O-U formula (2.33) implies that for any ' >0,

237 Am. J. Phys., Vol. 64, No. 3, March 1996

<I*(t)1*(t+t’)>= Z e—t'/f=_€i }_ e—t'/f
2 2 7
=’£_1_ —t'[r
R~ ’
where the last step has invoked Egs. (4.8). Integrating over
¢'>0 and then solving for R~ ! gives

R'1=i f (I*(OI*(e+1¢"))dt'. (4.12)
kT Jo

This, like Eqg. (3.19), is an ‘“‘auto-covariance transport for-
mula.” It expresses a transport coefficient, in this case the
electrical conductance R ! of the circuit, as a time integral
over the auto-covariance of some equilibrium microscopic
current, in this case the equilibrium electrical current in the
circuit. We shall refer to Eq. (4.12) as the conductance for-
mula.

Because the Johnson emf is proportional to Gaussian
white noise, its intensity is infinite:

(V2(1))=20. (4.13)

By contrast, the intensity of the fully relaxed dissipative volt-
age RI*(¢) is finite; because, ([RI*(£))*)=R*(I**(¢)), and
this, by Eq. (4.6b), is the finite quantity

([RI*(t)]*y=kTR?/L. (4.14)

We can gain more insight into the relationship between the
Johnson emf V(¢) and the fully relaxed dissipative voltage
RI*(t) by examining their spectral density functions.

Equation (4.10) tells us that the Johnson emf V(¢) is equal
to the Gaussian white noise process multiplied by the con-
stant a=(2kTR)'2. It therefore follows from Eq. (2.43) that
the spectral density function of V(¢) is given by 2a?; hence,
the famous Nyquist formula?

Sy(v)=4kTR (v=0). (4.15)

Sy(v)dv gives, by definition, the portion of (V(t)) due to
frequencies in the frequency band [ v, v+dv). The constancy
of Sy(v) is of course consistent with the infinite result
(4.13).

The spectral density function of the fully relaxed dissipa-
tive voltage RI*(¢) can, by Eq. (2.45), be calculated as the
product of R? times the spectral density function of I*(¢):

Sri(V)=R%S(v). (4.16)

Since I*(¢) is a fully relaxed O-U process, its spectral den-
sity function is given by Eq. (2.44). Substituting therein for 7
and ¢ from Egs. (4.8), we get

s 4kT 1 0
= =0). )
= \T¥@aior? =0 (4.17)
Combining Eqgs. (4.16) and (4.17), we conclude that the
spectral density function of the fully relaxed dissipative volt-
age RI*(1) is

4kTR
1+(27Lv/R)?

Sri(v)dv gives, by definition, the portion of ([RI*(¢)]%)
that is contributed by frequencies in the band [v,v+dv). It
is straightforward to show that the integral of Eq. (4.18) over
all v>0 equals kTR?/L, in agreement with Eq. (4.14). We
note that Sg,(v) is equal to Sy(») at »=0, but falls off from

SRI(V)= (V?O). (4.18)
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that “Nyquist value” in the manner of Fig. 1(a) as v in-
creases from zero. Apparently, the self-inductance of the loop
“filters out” the higher frequencies. A log—log plot of S¢/(v)
gives a leglike curve, as in Fig. 1(b), with a “knee” at fre-
quency R/27L. Below that knee the curve has slope 0, and
above it has slope —2; so the frequency region below R/27L
is called the white noise region, and the frequency region
above R/27L is called the 1/f noise region.

The spectral density function S,(v) in Eq. (4.17) is by
definition such that

(I*(1))= f:s,( v)dv. (4.19)

Since (L/2)(I**(t)) is the average energy of the equilibrium
current in the loop, then by multiplying Eq. (4.19) through
by L/2 we may conclude from Eq. (4.17) that the frequency
spectrum of the average energy of the equilibrium current is
described by the function

L _2kTL( 1 ) _
E=3 8= \15Gawrz =Y

It is easy to verify that the integral of this function over all
v>0 gives kT, in agreement with Eq. (4.6a). And since
(RI**(t)) is the average power that is dissipated by the
equilibrium current in the loop, then by multiplying Eq.
(4.19) through by R we may deduce that the frequency spec-
trum of the average dissipated power of the equilibrium cur-
rent is described by the function

4kT

D(M=RS((V) = [T LR

(v=0). (4.21)

As expected, the integral of this function over all v>0 gives
the total dissipated power, kTR/L.

Finally, in the limit L —0 Egs. (4.8) show that 7 will ap-
proach 0 and ¢ will approach «, but

L (2kTR)'” B ( 2kT) 172

n_=
TR L R

€E=T

will remain constant. We can therefore invoke the zero-tau
limit theorem (2.38) to obtain

2%T 12
lim I(t)=(——) I'(s), (4.22)

L—0 R

where I'(¢) is Gaussian white noise. Note that if we multiply
Eq. (4.22) through by R and then invoke the fluctuation—
dissipation formula (4.10), we get

lim [RI(¢)]=V(2),
L—0

(4.23)

which is just what we should expect from the original circuit
equation (4.1). So, in the limit L —0, the practical distinction
between the dissipative voltage RI(f) and the Johnson emf
V(t) disappears. Another consequence of the zero-tau limit
theorem here is that the integral of I(t), namely the net
charge Q(¢) conveyed in some sense around the loop be-
tween times ¢, and ¢, becomes a driftless Wiener process
with diffusion constant 2k7/R; so as L—0, Q(¢) becomes,
by Eq. (2.37), a normal random variable with mean 0 and
standard deviation [2kT(¢t—to)/R]*™
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V. CONCLUSIONS

The analyses of Brownian motion and Johnson noise pre-
sented here are predicated on two assumptions: First, the
driving force in each case can be regarded as the sum of a
“retarding force™ that is linear in the process and a “random
force” that is independent of the process; this is Langevin’s
hypothesis. Second, each process asymptotically satisfies
classical statistical thermodynamics. We showed, in Secs. IIT
and IV, how all the principal results of classical Brownian
motion and Johnson noise can be rigorously and efficiently
derived from these two assumptions by using the mathemati-
cal machinery of continuous Markov process theory.

A focused tutorial on continuous Markov process theory
was presented in Sec. II. Our exposition there utilized a
streamlined approach to random variables, and it empha-
sized, through the theorem at Eq. (2.13), that continuous
Markov process theory is a natural extension of ordinary
differential calculus which has a remarkable logical rigidity.
In particular, in the Langevin equation (2.14), we cannot
summarily replace N(t) with some nonnormal random vari-
able, or (dt)'* with some other d¢ dependence, and still have
an update formula for a continuous memoryless stochastic
process that is self-consistent.

Also implied here is a cautionary note for any proposed
“non-Markovian generalization” of the Langevin equation:
Even if a process update rule incorporates some memory
effect, the update rule still must satisfy the self-consistency
condition, that its application to the two successive intervals
[¢t,t+ adt] and [t+ adt,t+dt] gives, for any ae(0,1), the
same result as its application to the interval [#,z+d¢], at least
to lowest order in dt. Devising a nonmemoryless (non-
Markovian) update formula that satisfies this self-
consistency condition is not an easy task; indeed, as we saw
in Egs. (2.3), it is not hard to write down a process update
formula that looks legitimate but is actually self-
contradicting. Many non-Markovian processes are compo-
nents, or functions of one or more components, of multivari-
ate Markov processes, and it may be that such non-
Markovian processes are best analyzed from that point of
view. Whether all non-Markovian processes of physical in-
terest can be so analyzed appears to be a question that has
not yet been seriously addressed.
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APPENDIX: DERIVATION OF EQ. (2.13)

To prove the theorem at Eq. (2.13), we begin by dividing
the interval [¢,¢+dt) into n>1 subintervals of equal length
dit/n by means of the points ¢;=t+i(dt/n), (i=0 to n). We
then have

)((t+dt)—X(t)=)((t,,)—x(to)=Z1 [X(t)—X(t;-1)]

X(t+dt)—-X(t)=Zl [X(t;—y+dt/n)—X(t;_1)]. (A1)
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Balion (A1) shows that the conditional increment E de-
fed in Eq. (2.12) must satisfy, for any n>1, the self-
awsistency relation

H

SdnX(),0= 2 E(dtin: X (1)t ).

=1

(A2)

Conditions (ii) and (iii), stated just below Eq. (2.12), tell
usthat = is 2 smooth function of its last two arguments while
Yiscontinuous in f. So, since dt can be made so small that
dithe ¢,’s are arbitrarily close to 1, then, at least to lowest
otder in di, we can replace in Eq. (A2)

ti—t and X(t;-)—=X(1)=x. (A3)

We therefore conclude that, at least to lowest order in dt¢ and
forall w1,

S(drx,)= 2 B dtin;x,t1). (Ad)
i=1

The terms =, ,..., =, in Eq. (A4) are n copies of the ran-
bm variable E(dt/n;x,t). They are statistically indepen-
demt copics, since condition (i) stipulates that each increment
is independent of what happened in the past. The (identical)
fist and second moments of these n random variables will be
ssumed to be finite on account of condition (iii), which im-
plies that sample values of Z(dt;x,¢) will tend to be close to
zro whenever dt is close to zero. So, by taking n to be
erbitrarify large, we may conclude by the central limit theo-
rm that the sum =S (d1;x,1) of these n statistically indepen-
dent random variables must be normal.

Since =(dt;x,!) is normal, then so are the n statistically
independent random variables = (dt/n;x,t). It therefore fol-
lows from Eq. (A4) and the normal sum theorem (2.11) that

mean{E(dr;x,!)}=§ mean{E ;(dt/n;x,1)}

=nXmean{=(dt/n;x,!)}, (A5a)
var{ Z(dt;x, 1)} = 21 var{E(dt/n;x,1)}
=nXvar{E(dt/n;x,1)}. (A5b)

Now. an casily proved theorem of elementary calculus says
that if i(z) is any smooth function of z that satisfies h(z)
=nh(z/n) for all positive integers n, then it must be true
hat #(z) = Cz, where C is independent of z.> Applying this
theorem to Egs. (A5) with dr replacing z, which is justified
because condition (ii) requires Z(dt;x,t) to be smooth in dt,
we conclude that both the mean and the variance of the con-
ditional increment Z(dr;x,t) must be directly proportional
io dt:

mean{ 2 (dt;x, 1)} =A(x,1)d1,

var{ S (dt;x,1)}=D(x,t)dt.

(A6a)
(A6b)

Here, A and D may depend (smoothly by hypothesis) on x
and . but not on dt. Also, since both var{E(dt;x,t)} and dr
are nonnegative, then D must be everywhere nonnegative.

Recalling now the previously established normality of
Z(dt;x,1), we have

Zidtx,)=N(A(x,0)de,D(x,t)dr). (A7)
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Equation (2.13) now follows simply by invoking Eq. (2.10),
and recognizing that the past-forgetting property described in
condition (i) demands that the unit normal N(¢) used for
each increment must be statistically independent of the unit
normals used for all earlier increments.
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A photon counting experiment for student physics laboratory is described. It is designed to illustrate
the probabilistic nature of the photodetection process itself as well as statistical fluctuations of light.
The setup enables the student to measure photon count distributions for both coherent and
pseudothermal light sources yielding Poisson and Bose—Einstein distributions, respectively.
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L. INTRODUCTION

Photon counting is a technique commonly used to measure
extremely low light fluxes. A photomultiplier tube (PMT) of
proper design is used to convert light into an electrical sig-
nal. (The most important property of photon counting PMT
is very high gain at the first dynode This allows one to
distinguish between the pulse' resulting from electrons
ejected from the photocathode and those coming from the
dynodes.) Light impinging on the photocathode of the PMT
ejects electrons from it. Assuming that the gain of the PMT
itself and that of the following electronics is high enough,
one can distinguish individual electrical pulses, each of them
corresponding to a single photoelectron. The electrical pulses
from the PMT are fed into a discriminator and pulses with
amplitudes higher than a given threshold value are counted.
Those are usually referred to as photon counts. This way one
can count the number of electrical pulses, ideally each of
them corresponding to a single photoelectron. Since for each
photoelectron created one photon of the light field has to be
destroyed, the method is commonly called photon counting.
Thus, in this oversimplified picture, one can think of the
method as a way to prove the existence of photons. This is
not true. Actually there is no need to quantize the electro-
magnetic field in order to explain all the features of the pho-
toelectric process. All that is necessary is an assumption that
the light interacts with matter which is described quantum
mechanically. This leads to what is commonly referred to as
a semiclassical description,” a model in which light is de-
scribed as a classical electromagnetic wave and the atomic
system, the photocathode in our case, quantum mechanically.
The question of whether one has to invoke the quantum na-
ture of electromagnetic field at all has been disputed ever
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since Einstein introduced the notion of the “light quantum”
in 1905 in his paper describing the external photoelectric
process.® Several different models for the photon have been
proposed startlng with a simple partlcle model and ending
with what is known as Dirac’s model,* each of them present-
ing its own difficulties in interpretation. Amazingly enough,
the answer to this question has been settled quite recently
when expenments on photon antibunching® and squeezed
states (for a review on the topic see, for example, the paper
by Walls') proved that at least in some cases a quantum
mechanical description of the light is necessary. Since in the
experiments described in this paper the light can be perfectly
described in a classical way, the semiclassical picture will be
used henceforth.

The noise present in photon counting can be separated into
two terms. The first is of a technical nature and is caused
predominantly by electrical pulses created by amplification
of electrons thermally released from the photocathode or the
first dynode, which cannot be distinguished from the pulses
corresponding to photoelectrons. Those pulses are present
even if there is no light falling on the photocathode and for
this reason are called dark counts. The dark count rate can be
minimized by proper design and cooling of the PMT. Cur-
rently, even modestly priced systems have a dark count rate
as small as a few counts per second. We will assume
throughout this paper that the dark counts can be neglected
altogether. The second contribution to the noise in the photon
counting experiment and the only one considered in this pa-
per is of a fundamental nature and cannot be eliminated.
Again, it can be divided into two parts caused by the stochas-
tic nature of photoelectric process and light intensity fluctua-
tions, respectively. Using the semiclassical model mentioned
above one finds that for a constant intensity of light reaching
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